Local bifurcations of a quasiperiodic Orbit

نویسندگان

  • Soumitro Banerjee
  • Damian Giaouris
  • Petros Missailidis
  • Otman Imrayed
چکیده

We consider the local bifurcations that can happen to a quasiperiodic orbit in a 3-dimensional map: (a) a torus doubling resulting in two disjoint loops, (b) a torus doubling resulting in a single closed curve with two loops, (c) the appearance of a third frequency, and (d) the birth of a stable torus and an unstable torus. We analyze these bifurcations in terms of the stability of the point at which the closed invariant curve intersects a “second Poincaré section”. We show that these bifurcations can be classified depending on where the eigenvalues of this fixed point cross the unit circle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multistability and nonsmooth bifurcations in the Quasiperiodically forced Circle Map

It is well-known that the dynamics of the Arnold circle map is phase-locked in regions of the parameter space called Arnold tongues. If the map is invertible, the only possible dynamics is either quasiperiodic motion, or phase-locked behavior with a unique attracting periodic orbit. Under the influence of quasiperiodic forcing the dynamics of the map changes dramatically. Inside the Arnold tong...

متن کامل

Local and Global bifurcations in Three-Dimensional, Continuous, Piecewise Smooth Maps

In this work, we study the dynamics of a three-dimensional, continuous, piecewise smooth map. Much of the nontrivial dynamics of this map occur when its fixed point or periodic orbit hits the switching manifold resulting in the so-called border collision bifurcation. We study the local and global bifurcation phenomena resulting from such borderline collisions. The conditions for the occurrence ...

متن کامل

Heteroclinic dynamics in a model of Faraday waves in a square container

We study periodic orbits associated with heteroclinic bifurcations in a model of the Faraday system for containers with square cross-section and single-frequency forcing. These periodic orbits correspond to quasiperiodic surface waves in the physical system. The heteroclinic bifurcations are related to a continuum of heteroclinic connections in the integrable Hamiltonian limit, some of which pe...

متن کامل

Complex Dynamics in Swing Equations of a Power System Model

Complex dynamics in the reduced swing equations of a power system are investigated. As the change of bifurcation parameter μ, the system exhibits complex bifurcations, such as saddle-node bifurcation, Hopf bifurcation, cyclic fold bifurcation and torus bifurcations and complex dynamics, such as periodic orbits, quasiperiodic orbits, period-doubling orbits and chaotic attractors which link with ...

متن کامل

North-HoUand, Amsterdam CLASSIFICATION AND UNFOLDING OF DEGENERATE HOPF BIFURCATIONS WITH 0(2) SYMMETRY: NO DISTINGUISHED PARAMETER

The Hopf bifurcation in the presence of 0(2) symmetry is considered. When the bifurcation breaks the symmetry, the critical imaginary eigenvalues have multiplicity two and generically there are two primary branches of periodic orbits which bifurcate simultaneously. In applications these correspond to rotating (traveling) waves and standing waves. Using equivariant singularity theory a classific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012